3.613 \(\int \frac{(d+e x)^{3/2}}{a-c x^2} \, dx\)

Optimal. Leaf size=149 \[ -\frac{\left (\sqrt{c} d-\sqrt{a} e\right )^{3/2} \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{c} d-\sqrt{a} e}}\right )}{\sqrt{a} c^{5/4}}+\frac{\left (\sqrt{a} e+\sqrt{c} d\right )^{3/2} \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{a} e+\sqrt{c} d}}\right )}{\sqrt{a} c^{5/4}}-\frac{2 e \sqrt{d+e x}}{c} \]

[Out]

(-2*e*Sqrt[d + e*x])/c - ((Sqrt[c]*d - Sqrt[a]*e)^(3/2)*ArcTanh[(c^(1/4)*Sqrt[d + e*x])/Sqrt[Sqrt[c]*d - Sqrt[
a]*e]])/(Sqrt[a]*c^(5/4)) + ((Sqrt[c]*d + Sqrt[a]*e)^(3/2)*ArcTanh[(c^(1/4)*Sqrt[d + e*x])/Sqrt[Sqrt[c]*d + Sq
rt[a]*e]])/(Sqrt[a]*c^(5/4))

________________________________________________________________________________________

Rubi [A]  time = 0.281862, antiderivative size = 149, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {704, 827, 1166, 208} \[ -\frac{\left (\sqrt{c} d-\sqrt{a} e\right )^{3/2} \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{c} d-\sqrt{a} e}}\right )}{\sqrt{a} c^{5/4}}+\frac{\left (\sqrt{a} e+\sqrt{c} d\right )^{3/2} \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{a} e+\sqrt{c} d}}\right )}{\sqrt{a} c^{5/4}}-\frac{2 e \sqrt{d+e x}}{c} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^(3/2)/(a - c*x^2),x]

[Out]

(-2*e*Sqrt[d + e*x])/c - ((Sqrt[c]*d - Sqrt[a]*e)^(3/2)*ArcTanh[(c^(1/4)*Sqrt[d + e*x])/Sqrt[Sqrt[c]*d - Sqrt[
a]*e]])/(Sqrt[a]*c^(5/4)) + ((Sqrt[c]*d + Sqrt[a]*e)^(3/2)*ArcTanh[(c^(1/4)*Sqrt[d + e*x])/Sqrt[Sqrt[c]*d + Sq
rt[a]*e]])/(Sqrt[a]*c^(5/4))

Rule 704

Int[((d_) + (e_.)*(x_))^(m_)/((a_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1))/(c*(m - 1)), x] +
Dist[1/c, Int[((d + e*x)^(m - 2)*Simp[c*d^2 - a*e^2 + 2*c*d*e*x, x])/(a + c*x^2), x], x] /; FreeQ[{a, c, d, e}
, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[m, 1]

Rule 827

Int[((f_.) + (g_.)*(x_))/(Sqrt[(d_.) + (e_.)*(x_)]*((a_) + (c_.)*(x_)^2)), x_Symbol] :> Dist[2, Subst[Int[(e*f
 - d*g + g*x^2)/(c*d^2 + a*e^2 - 2*c*d*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e, f, g}, x]
 && NeQ[c*d^2 + a*e^2, 0]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{(d+e x)^{3/2}}{a-c x^2} \, dx &=-\frac{2 e \sqrt{d+e x}}{c}-\frac{\int \frac{-c d^2-a e^2-2 c d e x}{\sqrt{d+e x} \left (a-c x^2\right )} \, dx}{c}\\ &=-\frac{2 e \sqrt{d+e x}}{c}-\frac{2 \operatorname{Subst}\left (\int \frac{2 c d^2 e+e \left (-c d^2-a e^2\right )-2 c d e x^2}{-c d^2+a e^2+2 c d x^2-c x^4} \, dx,x,\sqrt{d+e x}\right )}{c}\\ &=-\frac{2 e \sqrt{d+e x}}{c}-\frac{\left (\sqrt{c} d-\sqrt{a} e\right )^2 \operatorname{Subst}\left (\int \frac{1}{c d-\sqrt{a} \sqrt{c} e-c x^2} \, dx,x,\sqrt{d+e x}\right )}{\sqrt{a} \sqrt{c}}+\frac{\left (\sqrt{c} d+\sqrt{a} e\right )^2 \operatorname{Subst}\left (\int \frac{1}{c d+\sqrt{a} \sqrt{c} e-c x^2} \, dx,x,\sqrt{d+e x}\right )}{\sqrt{a} \sqrt{c}}\\ &=-\frac{2 e \sqrt{d+e x}}{c}-\frac{\left (\sqrt{c} d-\sqrt{a} e\right )^{3/2} \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{c} d-\sqrt{a} e}}\right )}{\sqrt{a} c^{5/4}}+\frac{\left (\sqrt{c} d+\sqrt{a} e\right )^{3/2} \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{c} d+\sqrt{a} e}}\right )}{\sqrt{a} c^{5/4}}\\ \end{align*}

Mathematica [A]  time = 0.115088, size = 147, normalized size = 0.99 \[ \frac{-2 \sqrt{a} \sqrt [4]{c} e \sqrt{d+e x}+\left (\sqrt{c} d-\sqrt{a} e\right )^{3/2} \left (-\tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{c} d-\sqrt{a} e}}\right )\right )+\left (\sqrt{a} e+\sqrt{c} d\right )^{3/2} \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{a} e+\sqrt{c} d}}\right )}{\sqrt{a} c^{5/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^(3/2)/(a - c*x^2),x]

[Out]

(-2*Sqrt[a]*c^(1/4)*e*Sqrt[d + e*x] - (Sqrt[c]*d - Sqrt[a]*e)^(3/2)*ArcTanh[(c^(1/4)*Sqrt[d + e*x])/Sqrt[Sqrt[
c]*d - Sqrt[a]*e]] + (Sqrt[c]*d + Sqrt[a]*e)^(3/2)*ArcTanh[(c^(1/4)*Sqrt[d + e*x])/Sqrt[Sqrt[c]*d + Sqrt[a]*e]
])/(Sqrt[a]*c^(5/4))

________________________________________________________________________________________

Maple [B]  time = 0.209, size = 335, normalized size = 2.3 \begin{align*} -2\,{\frac{e\sqrt{ex+d}}{c}}+{a{e}^{3}\arctan \left ({c\sqrt{ex+d}{\frac{1}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ac{e}^{2}}}}{\frac{1}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}}}+{ce{d}^{2}\arctan \left ({c\sqrt{ex+d}{\frac{1}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ac{e}^{2}}}}{\frac{1}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}}}-2\,{\frac{de}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}\arctan \left ({\frac{\sqrt{ex+d}c}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}} \right ) }+{a{e}^{3}{\it Artanh} \left ({c\sqrt{ex+d}{\frac{1}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ac{e}^{2}}}}{\frac{1}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}}}+{ce{d}^{2}{\it Artanh} \left ({c\sqrt{ex+d}{\frac{1}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ac{e}^{2}}}}{\frac{1}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}}}+2\,{\frac{de}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}{\it Artanh} \left ({\frac{\sqrt{ex+d}c}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(3/2)/(-c*x^2+a),x)

[Out]

-2*e*(e*x+d)^(1/2)/c+1/(a*c*e^2)^(1/2)/((-c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctan((e*x+d)^(1/2)*c/((-c*d+(a*c*e^2
)^(1/2))*c)^(1/2))*a*e^3+e/(a*c*e^2)^(1/2)/((-c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctan((e*x+d)^(1/2)*c/((-c*d+(a*c
*e^2)^(1/2))*c)^(1/2))*c*d^2-2*e/((-c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctan((e*x+d)^(1/2)*c/((-c*d+(a*c*e^2)^(1/2
))*c)^(1/2))*d+1/(a*c*e^2)^(1/2)/((c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctanh((e*x+d)^(1/2)*c/((c*d+(a*c*e^2)^(1/2)
)*c)^(1/2))*a*e^3+e/(a*c*e^2)^(1/2)/((c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctanh((e*x+d)^(1/2)*c/((c*d+(a*c*e^2)^(1
/2))*c)^(1/2))*c*d^2+2*e/((c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctanh((e*x+d)^(1/2)*c/((c*d+(a*c*e^2)^(1/2))*c)^(1/
2))*d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int \frac{{\left (e x + d\right )}^{\frac{3}{2}}}{c x^{2} - a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(-c*x^2+a),x, algorithm="maxima")

[Out]

-integrate((e*x + d)^(3/2)/(c*x^2 - a), x)

________________________________________________________________________________________

Fricas [B]  time = 2.03652, size = 1970, normalized size = 13.22 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(-c*x^2+a),x, algorithm="fricas")

[Out]

1/2*(c*sqrt((c*d^3 + 3*a*d*e^2 + a*c^2*sqrt((9*c^2*d^4*e^2 + 6*a*c*d^2*e^4 + a^2*e^6)/(a*c^5)))/(a*c^2))*log(-
(3*c^2*d^4*e - 2*a*c*d^2*e^3 - a^2*e^5)*sqrt(e*x + d) + (3*a*c^2*d^2*e^2 + a^2*c*e^4 - a*c^4*d*sqrt((9*c^2*d^4
*e^2 + 6*a*c*d^2*e^4 + a^2*e^6)/(a*c^5)))*sqrt((c*d^3 + 3*a*d*e^2 + a*c^2*sqrt((9*c^2*d^4*e^2 + 6*a*c*d^2*e^4
+ a^2*e^6)/(a*c^5)))/(a*c^2))) - c*sqrt((c*d^3 + 3*a*d*e^2 + a*c^2*sqrt((9*c^2*d^4*e^2 + 6*a*c*d^2*e^4 + a^2*e
^6)/(a*c^5)))/(a*c^2))*log(-(3*c^2*d^4*e - 2*a*c*d^2*e^3 - a^2*e^5)*sqrt(e*x + d) - (3*a*c^2*d^2*e^2 + a^2*c*e
^4 - a*c^4*d*sqrt((9*c^2*d^4*e^2 + 6*a*c*d^2*e^4 + a^2*e^6)/(a*c^5)))*sqrt((c*d^3 + 3*a*d*e^2 + a*c^2*sqrt((9*
c^2*d^4*e^2 + 6*a*c*d^2*e^4 + a^2*e^6)/(a*c^5)))/(a*c^2))) + c*sqrt((c*d^3 + 3*a*d*e^2 - a*c^2*sqrt((9*c^2*d^4
*e^2 + 6*a*c*d^2*e^4 + a^2*e^6)/(a*c^5)))/(a*c^2))*log(-(3*c^2*d^4*e - 2*a*c*d^2*e^3 - a^2*e^5)*sqrt(e*x + d)
+ (3*a*c^2*d^2*e^2 + a^2*c*e^4 + a*c^4*d*sqrt((9*c^2*d^4*e^2 + 6*a*c*d^2*e^4 + a^2*e^6)/(a*c^5)))*sqrt((c*d^3
+ 3*a*d*e^2 - a*c^2*sqrt((9*c^2*d^4*e^2 + 6*a*c*d^2*e^4 + a^2*e^6)/(a*c^5)))/(a*c^2))) - c*sqrt((c*d^3 + 3*a*d
*e^2 - a*c^2*sqrt((9*c^2*d^4*e^2 + 6*a*c*d^2*e^4 + a^2*e^6)/(a*c^5)))/(a*c^2))*log(-(3*c^2*d^4*e - 2*a*c*d^2*e
^3 - a^2*e^5)*sqrt(e*x + d) - (3*a*c^2*d^2*e^2 + a^2*c*e^4 + a*c^4*d*sqrt((9*c^2*d^4*e^2 + 6*a*c*d^2*e^4 + a^2
*e^6)/(a*c^5)))*sqrt((c*d^3 + 3*a*d*e^2 - a*c^2*sqrt((9*c^2*d^4*e^2 + 6*a*c*d^2*e^4 + a^2*e^6)/(a*c^5)))/(a*c^
2))) - 4*sqrt(e*x + d)*e)/c

________________________________________________________________________________________

Sympy [B]  time = 37.8756, size = 316, normalized size = 2.12 \begin{align*} - \frac{2 a e^{3} \operatorname{RootSum}{\left (t^{4} \left (256 a^{3} c e^{6} - 256 a^{2} c^{2} d^{2} e^{4}\right ) + 32 t^{2} a c d e^{2} - 1, \left ( t \mapsto t \log{\left (- 64 t^{3} a^{2} c d e^{4} + 64 t^{3} a c^{2} d^{3} e^{2} - 4 t a e^{2} - 4 t c d^{2} + \sqrt{d + e x} \right )} \right )\right )}}{c} + 2 d^{2} e \operatorname{RootSum}{\left (t^{4} \left (256 a^{3} c e^{6} - 256 a^{2} c^{2} d^{2} e^{4}\right ) + 32 t^{2} a c d e^{2} - 1, \left ( t \mapsto t \log{\left (- 64 t^{3} a^{2} c d e^{4} + 64 t^{3} a c^{2} d^{3} e^{2} - 4 t a e^{2} - 4 t c d^{2} + \sqrt{d + e x} \right )} \right )\right )} - 4 d e \operatorname{RootSum}{\left (256 t^{4} a^{2} c^{3} e^{4} - 32 t^{2} a c^{2} d e^{2} - a e^{2} + c d^{2}, \left ( t \mapsto t \log{\left (- 64 t^{3} a c^{2} e^{2} + 4 t c d + \sqrt{d + e x} \right )} \right )\right )} - \frac{2 e \sqrt{d + e x}}{c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(3/2)/(-c*x**2+a),x)

[Out]

-2*a*e**3*RootSum(_t**4*(256*a**3*c*e**6 - 256*a**2*c**2*d**2*e**4) + 32*_t**2*a*c*d*e**2 - 1, Lambda(_t, _t*l
og(-64*_t**3*a**2*c*d*e**4 + 64*_t**3*a*c**2*d**3*e**2 - 4*_t*a*e**2 - 4*_t*c*d**2 + sqrt(d + e*x))))/c + 2*d*
*2*e*RootSum(_t**4*(256*a**3*c*e**6 - 256*a**2*c**2*d**2*e**4) + 32*_t**2*a*c*d*e**2 - 1, Lambda(_t, _t*log(-6
4*_t**3*a**2*c*d*e**4 + 64*_t**3*a*c**2*d**3*e**2 - 4*_t*a*e**2 - 4*_t*c*d**2 + sqrt(d + e*x)))) - 4*d*e*RootS
um(256*_t**4*a**2*c**3*e**4 - 32*_t**2*a*c**2*d*e**2 - a*e**2 + c*d**2, Lambda(_t, _t*log(-64*_t**3*a*c**2*e**
2 + 4*_t*c*d + sqrt(d + e*x)))) - 2*e*sqrt(d + e*x)/c

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(-c*x^2+a),x, algorithm="giac")

[Out]

Timed out